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1.  Introduction 

Consider a typical multi-echelon repairable-item inventory system 

as shown schematically in Figure 1.  Shown there is a two  location 

(bases) , tU)o   level of supply (spares at bases and depot) , two   level of 

repair (base and depot) system which we shall denote as a  (2,2,2)  sys- 

tem.  The nodes  BUi  (i = 1,2)  represent  operating and spare units 

(we consider for now only a single item such as a final assembly or a 

key component) at base  i ,  BRi  (i = 1,2)  represent  the repair fa- 

cility at base i ,  DU represents depot spares, and DR the depot 

repair facility. 

Our goal is to develop exact mathematical models for such finite 

calling population (finite number of items), finite repair capacity, 

repairable item provisioning systems in both time-varying and steady- 

state environments.  Specifically, we wish to find the state probability 

vector (the probability distribution for the system being in its various 
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Figure 1,  Multi-echelon, repair- 
able item system. 

possible states) which will allow us to then calculate measures of per- 

formance such as availability (the probability that at least some desir- 

able, prespecified number of components is operational).  Ultimately, 

these models will be used to yield the optimal combination of spares and 

repair channels at each location in the system. 

Assuming times to component failure and component repair times 

to be exponentially distributed random variables, we have a continuous 

time Markov process (CTMP).  The process is driven by a rate matrix 

Q = "^^ij-^ ' where q is the "rate" of going from state  i  to state 

j ; that is, letting X(t)  represent the system state at time  t 

q. . = lim 
ij At-K) 

"Pr{x(t+At) = .l|x(t) = i}" 
At > i ^ j ; 

^ii = 1 
(i^j) 

ij 

For example, suppose the  (2,2,2)  system pictured in Figure 1 

is in a state (call it i ) for which the depot spares pool is not 
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empty (at least one spare is on hand at the depot).  Suppose we consider 

the event:  a component fails at base 1.  Describing this state  i by 

the vector  (n^^^, n^^^^, n^^^,   n^^^' '^u' ^R^ ' ^^^^^ \ denotes the 

number of components at node k in the "network," this event takes the 

system to a state j , namely,  (n^^^, n^^^, n^^^,   n^^^,   n^^-l, n^^+1) , 

at the rate q.. = Xa^ n^^^^^ , where  1/X  is the mean time to failure 
IJ     1  xsui 

(MTTF) of a component and a  is the probability (or percentage) of 

failed items requiring depot repair. 

If we denote the state probability (row) vector at time  t by 

7T(t) = (j\^(t) ,   TT2(t), ..., TTg(t)3 , that is, the ith element,  ■iT.(t) , 

is the probability of the system being in state  i  at time  t  (there 

is a finite number of states [call this number S] even though this number 

can be quite large), then we must solve the finite set of first-order, 

linear differential (Kolmogorov) equations 

TT'(t) = Tr(t)Q . (1) 

For steady-state solutions, we are required to solve the finite set of 

linear algebraic steady state equations, 

0 = IQ , (2) 

where TT = (TT^, TT^, ..., TT )  is the steady-state probability vector and 

0  is a row vector of all zeroes.  In both steady-state and transient 

cases we have the further condition that the probabilities sum to one, 

namely, - 

1 = 3[(t)e = TTe , 

where  e  is a column vector, with all components equal to 1. 

- 3 - 
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2.  Transient Environment 

We are often interested in what happens to such systems in a time- 

varying environment.  For example, a sudden increase in effort (say a 

peacetime to wartime shift) may cause a sudden decrease in MTTF.  In 

such situations, it is necessary to have JlCt) , and we must solve the 

finite set of first order linear differential equations given in (1). 

Except for very small systems (one or two states) analytical tech- 

niques such as Laplace transfoirms are intractable.  Since we have a fi- 

nite set of equations, numerical methods can be employed.  Numerical in- 

tegration schemes such as Runge-Kutta or predictor-corrector methods 

are possibilities.  We choose a different approach, however, which is 

referred to by some as randomization,   and has been shown to be more ef- 

ficient for these kinds of problems [see Arsham, Balana, and Gross (1983) 

or Grassmann (1977a)].  For details on this technique, which can be 

derived by a probabilistic argument when viewing the CTMP in a certain way, 

see Grassmann (1977a and b) or Gross and Miller (1984a and b). 

The computational formulas are as follows.  Consider a discrete 

time Markov chain (DTMC) with single-step transition probability matrix 

P = Q/A + I , 

where 

.  A = max q..I , 
' xx' 

X 

that is,  A  is the maximum of the absolute values on the diagonal of 

the Q matrix.  Since a diagonal element of Q  is the negative of the 

sum of the other elements in the row (rows of the Q matrix sum to 

zero),  A  is actually the absolute value of the minimum (largest 

■   _ 4 _ 
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negative) diagonal element of the matrix.  This DTI>IC is referred to as 

(\c) a  uniformized embedded DTMC of the CTMP.  Denoting by ^    the 

state probability vector of this DTMC after k transitions, it can be 

shown (see the above cited references) that 

, (,) = I    ^0.)   (At)  e   ^ 
J    k=0 ^     '*^- 

For computational purposes, it is necessary to truncate the infinite 

sum.  The truncation error can be easily bounded since we are 

discarding a Poisson "tail," so that the computational formula 

becomes 

T(t,£)  ., , ,. .k -At 
-At) =     I     .(k)IAt)^_, (3) 
^     k=0  ^     ^• 

where 

T(t,e) = min 
N  -At,, sn       ) 

n=0 ) 

£  being the maximum tolerable error (specified by the user). One 

advantage of this method over numerical integration is an exact bound 

on the computational error. 

The major computational effort in using (3) is now reduced to 

finding the state probability vector, ^ , of the uniformized em- 

bedded DTMC.  This can be readily accomplished by the usual recursion, 

i^O) =.(0) ; ^(^+1) =i(k)p .       '  •     (4) 

Gross and Miller (1984a) give a more efficient procedure than the suc- 

cessive vector-matrix multiplication of (4), which takes advantage of 

the sparsity of the P matrix. 

5 - 
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3.  Steady-state Environment ' 

Solving for the steady-state probability vector TT  requires 

solving the set of linear algebraic equations of (2).  Since one of these 

equations is redundant, it is necessary to reduce the equation set by 

one and use  1 = TTe  as the final equation.  Thus (2) can be reformulated as 

b = TTA ,     -, ,    .   (5) 

where b  is a vector of all zeroes, except for the last element, which 

is a 1, and A is the Q matrix with the last column replaced by I's. 

For relatively small systems, the solution can be obtained by 

inverting A to get ; 

TT = bA"-"" . 

However, for most realistic problems, the state space (and hence dimen- 

sion of the A matrix) is too large to obtain A~  efficiently or 

accurately.  This situation suggests iterative procedures such as 

Jacoby or Gauss-Seidel. 

Consider the A matrix as a sum, 

A = L + D + U , 

where L  is a lower triangular matrix,  D  is a matrix with only diagonal ele- 

ments, and U  is an upper triangular matrix.  Then (5) can be written as 

Tr(L+D+U) = b 

or . 

TTD = b - Tr(L+U) .    . '       (6) 

We can use (6) in an iterative fashion, 

J^'^+DD = b - TT^'^^L+U) . '  ■     (7) 

- 6 - 
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where we begin the procedure with some initial guess, say TT    .  This 

procedure is called Jacoby iteration.  Note that in performing the cal- 

culations, since D  is a diagonal matrix, we compute TT!:'^   , TT     , 

TT„     , •••  successively.  If, as we compute the TT.     , we replace 

the TT.    on the right-hand side [e.g., in computing TT.     , the 

TT^^)  vector is modified to be TT^"^ = {y^f'^^\  7T{^^^\ ..., TT^^+I^ , 

TT.  , TT ^^, . . ., TT  3^ ' this procedure is referred to as Gauss-Seidel 

iteration, and in matrix representation is 

T   T 
where TT and b are now column vectors, and U , L  are the trans- 

poses of U and L , respectively. 

Two questions remain to be answered concerning use of the itera- 

tive procedures of (7) or (8); namely, (i) do the procedures converge, 

and (ii) when should the iterations be terminated?  In general, these 

procedures may not necessarily converge, although for our well-structured 

Markov process convergence will take place.  The stopping criterion gen- 

erally used is the Cauchy criterion, namely, stop when 

max 
i 

1       1 < ^0 ' (9) 

where e^  is an "arbitrarily" chosen small number.  We found using the 

fractional difference version of (9), namely, stop when 

max 
i 

1       1 

1 

< EQ ' ^10) 

to be somewhat more effective.  While there has been some success in 

using Gauss-Seidel (G-S) on Markov models [see Kaufman, Gopinath, and 

- 7 - 
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Wunderlich (1981) ], problems exist with respect to rate of convergence 

and appropriate stopping criteria.  The G-S convergence rate can often be 

improved by using overrelaxation, that is, by weighting with a coeffi- 

cient greater than one the TT^'^   , TTJ'^   , ..., TT.^ ^     used in calcu- 

lating TT:'^"'"-^'*  [see Kaufman, et al.   (1981) or Maron (1982)]. 

Usually, the G-S procedure is applied to a set of equations with 

a nonsingular matrix (such as  A ).  Consider a nonsingular matrix M 

with positive diagonal elements and negative off-diagonal elements. 

The G-S procedure is known to converge for sets of equations with such 

an M matrix [see Varga (1963)].  Now consider equation set (2), namely, 

0 = IQ • 

Multiplying through by -1  gives 

0 = Tr[-Q] , 

where -Q has positive diagonal elements and negative off-diagonal ele- 

ments.  However, it is singular, since one equation of this set is re- 

dundant.  Suppose we arbitrarily set  Tr„  (assuming there are  S  states) 

to one, remove the last row of the Q matrix (call this reduced matrix 

Q ), and consider solving the reduced  S-1 x S-1  set of equations 

0 = Tr[-Q] . 

Now -Q  is an M matrix and convergence is guaranteed.  Of course the 

resulting  TT^  values are relative to TT^ = 1  so that they must be renor- 

malized by dividing each by  I-^-, TT. .  How fast convergence takes place 

still is a key question, however.  It turns out [see Kaufman, et at. 

(1981)] that working with the full Q matrix, even though it is singu- 

lar, speeds convergence, and this is what we also do. 
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Another procedure is to use the uniformized embedded DTMC of the 

randomization procedure with transition probability matrix P = Q/A 4- I . 

This Markov chain has limiting probabilities given by 

i = iP , (11) 

and they are identical to the TT of the CTMP we seek  [^ = ^P => ^ = 

iC(Q/^)+0 => 0 = ^(Q/A) => 0 = iQ = 0 = jQ ] .  Solving the set of 

equations given by (11) is no easier, of course, than solving that of 

(5).  However, we know from Markov chain theory that limiting probabil- 

ities of a DTMC can be found by iteration, namely, 

^(n+1) ^ ^(n)p _ ^^2) 

Here again, we have computational problems associated with iteration, 

but we know from Markov chain theory that convergence is guaranteed due to 

the existence of a steady state vector TT  (the P matrix is irreducible), 

The problem of when to stop the iterations remains, however.  Using the 

Cauchy criterion here results in problems similar to those found when 

using it for G-S iteration, namely, successive probabilities can differ 

by very small amounts and still be far from the steady state values. 

Wallace and Rosenberg (1966) provide a considerably better stop- 

ping criterion than the Cauchy criterion of (10).  Their stopping 

rule is based on estimating the rate of convergence by estimating 

the second eigenvalue of  P , and turns out to be:  "Stop when 

I (n+1)  (n) 
LIT ~ TT 

(n+l)  (n) 
TT      -TT 

<en •"       •      (13) 1/n " ^0 
1 - 

For details of this development, see Wallace and Rosenberg (1966) or 

Gross, Kioussis, Miller, and Soland (1984). 
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4.  Results 

The following section gives a brief summary of results to date. 

For greater detail, we refer the reader to Gross and Miller (1984b) and 

Gross, Kioussis, and Miller (1984) for the transient case and to Gross, 

Kioussis, Miller, and Soland (1984) for the steady-state case. 

4.1 Transient Case 

The largest system solved to date using equation (3) directly 

was a  (2,2,2)  system (as pictured in Figure 1) with 18 components at 

base 1 (of which 4 were spares), 13 at base 2 (of which 3 were spares), 

and 3 spares at the depot.  The base repair shops had 2 parallel service 

channels each, and the depot repair facility had four.  This gave a 

state space of 20,748 (Q = 20,748 x 20,748). 

The time-varying environment scenario is shown in Figure 2.  At 

time  6 , a shift in MTTF (1/A) occurs but it takes until time  10  for 

the repair facilities to "catch up" in MTTR (1/y).  This simulates a 

change in usage due to, say, a shift from peacetime to wartime.  The 

measure of effectiveness calculated is the availability at time  t 

(t = 1,2,...,15) , where availability is defined as follows: 

A (t)  E Pr{at least 14 components are operational at base 1 at 

time t}■ 

A„(t)  E Pr{at least 10 components are operational at base 2 at 

time t} 

A 2(t) E Pr{at least 14 components at base 1 and at least 10 

components at base 2 are simultaneously operational 

at time t} . 

- 10 - 
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1 

Repair rate 1.5y 

„   .                 > 50% incr. 
Repair rate ]i                            i 

Failure rate 1.5X 

Failure rate X    >50% incr. 

 1 1 1 1 1 \ \ 1 \ 1 \ \ 1 \ [— 
0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15  Time 

Figure 2.  Time-varying environment scenario for sample run. 

Figure 3 shows a plot of A^(t)  versus  t .  Plots of A„(t)  and 

A„(t)  are similar in nature.  The graph shows an initial A,(0)  of 1.0 

(we assume at time zero all   components are operational) and thereafter 

a drop-off toward the steady-state availability as time increases.  At 

time 6, the increase in failure rate occurs and A (t)  begins to drop 

off at a higher rate, heading for a new, lower steady-state availability. 

However, the increase in repair rate at time 10 causes A (t)  to begin 

to rise, heading back toward the original steady-state availability.  This 

run took approximately 25 minutes of CPU time on a VAX 11/780 computer 

using the randomization computation of (3) with the efficient procedure 

given in Gross and Miller (1984a) for calculating ^    . 

As the systems become more complex (more bases, multiple component 

types, indenture, more echelons, etc.) the state-space grows rapidly.  We 

have solved a problem with three bases, yielding a state-space of size 

43,278,703, by truncating the state-space ("lumping" low probability 

states into several absorbing states resulting in a truncated state space 

- 11 - 
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1.0 

0.8 -• 

0.6 -■ 

0.4 -■ 

0.2 -• 

0.0 

\ 

.•" 

/ 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 t 
I 

Figure 3. A (t)  versus t for sample run. j 

of approximately 15,000 states) on the VAX 11/780 in approximately 30 

minutes [see Gross, Kioussis, and Miller (1984)]. ''    _ 
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4.2  Steady-state Case 

Ironically, computational success has been far more elusive for 

the steady-state situation than for the transient case.  The problem is 

the stopping criterion for these iterative procedures (a problem not 

present when dealing with transient solutions).  In the transient case, 

the randomization procedure guarantees an accuracy to within a pre- 

specified £ .  For steady state, using either the Cauchy or the 

Wallace-Rosenberg stopping rule does not guarantee errors within e   . 

Table 1 shows some computations for a  (1,1,1)  system which is the 

classical machine repair with spares model of queueing theory.  For this 

model the availability can be computed analytically, which allowed 

us to estimate the actual error.  The columns under P-WR show the results 

of using (12) with the stopping criterion of (13), the Wallace-Rosenberg 

approach, while the GS-C columns show results for (8) with -the stopping 

criterion of (10), the Gauss-Seidel approach. 

The circled elements show the cases for which the error specifi- 

cation, e   ,  was exceeded.  While there were more cases of exceeding the 

stopping rule error specification in P-WR, the error excesses were 

larger, especially for the larger population cases, under GS-C.  But 

GS-C stopped in far fewer iterations in almost all cases (except for the 

very small population cases), and it is the number of iterations that 

consumes most of the CPU time. 

The last column shows a rerun of GS-C, ignoring the stopping cri- 

terion and performing the same number of iterations as used for the P-WR 

procedure.  The errors essentially went to zero, which indicates that 

if a better stopping criterion could be found, Gauss-Seidel iteration 

- 13 - 
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might be a viable approach.  Runs for some  (2,2,2)  systems and more 

detailed discussion of these steady-state procedures can be found in 

Gross, Kioussis, Miller, and Soland (1984). 
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